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Abstract. Two alternative software tools for damage identification are presented. The first tool, 

developed on the basis of the Virtual Distortion Method (VDM), takes advantage of an analytical 

formulation of the damage identification problem. Consequently, gradient-based optimization 

method is applied to solve the resulting dynamic inverse problem in time domain. Finite element 

model of the structure is necessary for the VDM approach. The second tool utilizes the Case-Based 

Reasoning (CBR) for damage identification. This method consists in i) extracting principal features 

of the response signal by wavelet transform, ii) creating a base of representative damage cases, iii) 

organizing and training the base by neural networks, and finally iv) retrieving and adapting a new 

case (possible damage) by similarity criteria. Basic description of both approaches is given. A 

comparison of numerical effectiveness, in terms of accuracy and computational time, is provided for 

a simple beam structure. Advantages and weaknesses of each approach are highlighted. 

Introduction 

The methods described in this paper belong to the low-frequency-based methods of damage 

identification. The incentive for developing them was the 5FP project PiezoDiagnostics (PD), 

dedicated to identification of corrosion in pipelines. In this project, damage identification tools were 

based on the phenomenon of elastic wave propagation in structures. The waves of low (below 1 

kHz) frequency were generated and captured by piezoelectric transducers. Structural responses 

(signatures) to the piezo-generated excitation were analyzed and anomalies in the responses were 

observed due to various types of damage. 

Basically, two independent approaches, leading eventually to two software packages have been 

developed in the PD project. The first approach - Virtual Distortion Method (VDM), developed by 

the IFTR, uses gradient-based optimization techniques and the other approach - Case-Based 

Reasoning (CBR), developed by the University of Girona (UdG), uses the wavelet transform for 

signal processing and neural networks to match cases by similarity criteria. 

Overviews of the VDM and CBR are given, respectively. Identification algorithms for each 

approach and comments on critical factors, highly influencing the success or failure of damage 

identification, are presented. A numerical example of a simple beam structure, handled by both 

methods, is demonstrated. Final comments summarize the comparison between the two approaches.  

Characteristics of the Two Approaches 

VDM. The Virtual Distortion Method has been developed for many years by the IFTR. It may be 

simply classified as a fast reanalysis technique (cf. [1]). This method is very efficient if we know an 

original response of the structure and then want to introduce some modifications to its behaviour 



    
 

without repeating the whole analysis. With the VDM we are able to solve various problems of 

structural mechanics e.g. progressive collapse, structural remodelling, damage identification, 

damping of vibration, adaptive structure design and other. 

As mentioned, VDM is used for modelling of local structural modifications. This is achieved by 

introducing a corresponding virtual distortion εo
, which is an initial strain, imposed locally in an 

element of a discrete (truss) or discretized (beam) structure. The VDM reanalysis can be performed 

very fast (with no iterations due to introducing an initial strain) because of the so-called influence 

matrix D, which is always created as a basis for all computations. The influence matrix defines all 

local-global inter-relations for a structure, including boundary conditions. It is obtained by 

successive imposition of unit virtual distortion in every element of the structure. Green’s functions 

are the analogy to the influence matrix for continuum. Detailed description of the VDM and its 

applications can be found in [2]. 

Let us briefly describe (cf. [3]) the inverse dynamic problem of damage identification. The 

objective is to determine damage location and intensity, both specified by the damage vector 
iµ , 

whose components correspond to the designed discretization of the structure (finite elements). The 

vector 
iµ , being the stiffness degradation ratio (the quotient of the current Ei and initial E’i Young’s 

modulus), is expressed in terms of strains ( )tiε  and virtual distortions ( )t0

iε , as follows: 
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Please note that the damage vector 
iµ  is time-independent in contrast to strains and virtual 

distortions.  

Let us define the objective function as the mean-square distance Af  between the measured 

response ( )tM

Aε  and numerical response ( )tAε , collected from the sensor locations A . The 

responses are due to the known excitation ( )τεα
0 , generated in the actuator location α . The 

numerical response is a superposition of the component ( )tL

Aε  expressing an intact response and the 

component ( )tR

Aε  adapting the intact response to the measured response ( )tM

Aε  by proper setting of 

virtual distortions ( )t0

jε  in possible damage locations j (potentially the whole structure). The 

influence matrix D, built at start of numerical simulation, plays the crucial role in VDM-based 

modelling. Thus the objective function is expressed as: 
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The inverse dynamic problem of damage identification consists in finding the minimum of the 

function f, with 
iµ  as design variables. In view of Eq. 1, the following constraints on 

iµ  have to be 

considered: 
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In order to solve the optimization problem, a gradient-based approach is applied, with the 

following analytical gradient calculated from the Eqs. 2a, 2b: 
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Having determined the above gradient of the objective function, the following optimization step 

is proposed: 
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where γ=const. and f(µi) is the current value of the objective function. Then, the calculation of the 

objective function and its gradients for the modified structure response can be performed in the next 

iteration until termination criterion is met. 

 

CBR. This section describes the UdG-developed methodology (cf. [4]) of damage identification 

(location, size and intensity), using the knowledge-based reasoning and soft-computing techniques. 

First, a model is used to simulate responses of damaged structures and to generate case libraries. 

Using the Self Organizing Maps (SOMs, cf. [5]) as classification tool, an initial casebase is built. 

This casebase is used in diagnosing future situations by analogy (see Fig. 1). In order to reduce the 

number of input signals to the SOM (it is required to have appropriate classification accuracy), the 

Wavelet Transform (WT, cf. [6]) has been utilized to extract features from the measured signal, 

retaining most of the intrinsic information. When the system is in operation mode, each new 

experience is retained once the damage has been detected. 

Case Libraries. Building the case library is done from a model or several models of the 

structure, simulating the dynamic response to a given excitation in the presence of one or several 

defects. Each library of cases is a data structure, which contains information about the simulated 

defect in the structure (location, size and intensity) and the simulated dynamic response. 

Casebase Building. The casebase is an array in memory of all cases, which facilitates the search 

of the case, being the most similar to the current problem. In the proposed methodology, the 

casebase is a SOM. It retrieves the group of stored cases with similar characteristics. Each case to 

save in the casebase is defined by the defect of the structure and the minimal representation of the 

damaged structure response. These principal features are extracted from coefficients of the WT 

applied to the dynamic response. The wavelet coefficients are computed from each selected case. 

The coefficients at the same position in different cases are considered as samples of independent 

random variables. Therefore, having in mind the Central Limit Theorem, each variable is 

approximately normally distributed. The peak probability values and the maximal wavelet 

coefficients occur at the same positions, which determine the midpoints of clusters. This pattern of 

clusters contains relevant signal information. Later on, each feature is determined as the square root 

of the energy of the wavelet coefficients in the corresponding cluster. This set of cases (defect of the 

structure and principal features of the signal) is used to build a casebase. Fig. 2 shows the process of 

feature extraction and building the casebase. After having the set of cases generated (defect and the 

principal features of the dynamic response), the organization of the data in memory for its recovery 

at the indicated moment is executed. A SOM is created and trained. This SOM has l neurons (one 

for each feature) in the 1D input layer and m*n clusters or neurons in the 2D output layer. In each 

cluster, the network organizes the cases with similar characteristics. 



    
 

 
 

Fig. 1  Proposed CBR cycle 
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Fig. 2  Casebase building 

 

Retrieving. Checking the methodology or putting the system in operation mode, can be done by 

numerical simulations, lab-testing and field-testing with real structures in their normal working 

conditions. Dynamic response of the structure is collected. From this signal, the principal features 

are extracted using the clustering pattern previously defined. From these features the SOM retrieves 

a set of stored cases with similar characteristics. 

Adapting. Using the previously retrieved cases, the first approach to adapt the solution and 

locate the defect is based on the concept of statistical mode, which is the defect that occurs most 

frequently in a set of retrieved cases. In order to calculate the size and the intensity of the defects, 

the weighted average is computed, using the data histogram (or distances) of the retrieved step as 

weighting coefficients. 

 



Specific Features of the Two Approaches 

VDM algorithm. The VDM-based identification algorithm performs the following steps: 

1. Complete modal analysis, 

2. Excite the beam with the windowed sine burst (isolated eigenmode providing smooth 

vibration response), 

3. Choose a low (below 1 kHz) eigenfrequency resulting in the highest value of the objective 

function, 

4. Look at initial gradients (rough indication of potential damage locations), 

5. Perform optimization 

a) modify damage coefficient according to Eq. 5, 

b) take heuristic care of the constraints, expressed by Eq. 3. 

 

VDM settings. The cost of computation of the gradients, expressed by Eq. 4, is high. It is 

influenced by the initial parameters assumed in analysis, especially by the number of time steps in 

Newmark algorithm and extension of the potentially damaged zone of the structure (the number of 

finite elements for which gradients are calculated). The higher number of time steps leads to some 

point to more accurate results, but at a certain stage the saturation point can be determined, beyond 

which no significant improvement is observed. This is the right compromise between the accuracy 

and computational speed. The higher number of finite elements considered as potentially damaged 

slows down the computations considerably. Therefore any hint based on engineering judgement on 

where the damage may be located is valuable as it narrows the zone. One should remember however 

that if we expect a small damage, the FE size should roughly correspond to our initial guess. 

Otherwise the small damage will not be detected. 

 

CBR algorithm. The CBR-based identification algorithm performs the following steps: 

1. Choose a structure to study, 

2. Define what kind of damage should be identified (size and intensity), 

3. Choose a set of case libraries, which contain previous simulations of various patterns of 

structural damage, 

4. Build a casebase from the selected libraries, 

5. Upload the waveform detected by the sensor in a supposedly damaged structure, 

6. Retrieve the most similar cases from the casebase, 

7. Adapt the previous solutions to propose a new solution, 

8. Generate the outcome report and display the identified damage of the structure, 

9. Retain the new solution as a part of a new case once it has been confirmed or validated. 

 

CBR settings. In order to get a meaningful identification result by CBR, one should build 

representative casebases. This means that a casebase should correspond to the expected type of 

damage as far as the number of damage locations, their extension and intensity are concerned. 

Properly built casebase, reflecting the features of a real damage, will have impact on the quality of 

the identification results. Another factor influencing the quality, but also computational time is the 

number of cases stored in a casebase. It seems that the higher number of cases implies better results, 

but a saturation point should be observed here as well, similarly to time steps in the VDM approach. 

Credibility of  a casebase should be assured by calibration of the numerical model used for 

generation of  cases of damaged structure responses. 

 



    
 

Numerical Example 

For demonstration of effectiveness of the PD software a cantilever beam structure, depicted in Fig. 

3, has been chosen. The beam is 98 cm long, 2 cm wide, 0.5 cm high, made of aluminium, 

discretized into 49 finite elements. The actuator is mounted in the middle of the beam in order to 

avoid the problem of false damage identification (see Section 4). It is excited with a 2.5-cycle, 

windowed sine burst of the frequency 491 Hz, corresponding to the 7th eigenmode of the beam. 

 

 
Fig. 3  Cantilever beam analyzed by VDM and CBR 

 

The whole zone between the actuator and the sensor, comprising 19 elements, is inspected. The 

damage in the structure has been simulated numerically by reduction of Young’s modulus in 

selected finite elements. Three damage cases, summarized in Table 1, have been considered. 

 

Table 1  Assumed damage cases 
 

Damage intensity coefficient (1-µ) Element chosen as 

damaged Damage case 1 Damage case 2 Damage case 3 

Element No. 5  0.0 0.3 0.3 

Element No. 10  0.0 0.0 0.2 

Element No. 15  0.5 0.5 0.5 

 

Table 2 presents computational times needed for obtaining a solution by the VDM-based 

identification procedure for each damage case. In the gradient-based optimization process, a drop of 

the objective function by orders of magnitude is monitored. It is clear that the more accurate 

solution is required, the more time is needed to obtain it. The VDM-based computations have been 

accomplished by a PC equipped with a 3.0 GHz processor. 

 

Table 2  Computational times for VDM 
 

Computational time [min] VDM-formulated 

objective function Damage case 1 Damage case 2 Damage case 3 

Drop by 1 order 12 15 16 

Drop by 2 orders 89 72 69 

Drop by 3 orders 327 444 283 

Drop by 4 orders 947 1019 760 

 

Table 3 presents analogous computational times needed by the CBR-based identification 

procedure. The constructed casebases are as follows: 

• Casebase I (one defect): 127 structural responses of simulated defects on every element 

between the actuator and sensor with the thickness reduction of 10%, 20%, 30%, 40%, 50% 

and 60%. 



• Casebase II (two defects): 630 structural responses of simulated defects on two separated 

(neighboring as a special case) elements between the actuator and sensor with the thickness 

reduction of 10%, 30% and 50%. 

• Casebase III (three defects): 1336 structural responses of simulated defects on three separated 

elements between the actuator and sensor with the thickness reduction of 10%, 30% and 50%. 

The CBR-based computations have been accomplished by a PC equipped with a 2.4 GHz processor. 

 

Table 3  Computational times for CBR 
 

Computational time [min] for all damage cases CBR casebases 

Library building Training Total 

Casebase I 1.4 0.1 1.5 

Casebase II 6.5 1.9 8.4 

Casebase III 12.6 4.8 17.4 

Casebase I+II 7.9 1.7 9.6 

Casebase I+II+III 20.6 19.9 40.5 

 

Fig. 4 presents VDM (left) vs. CBR (right) results for the three assumed damage cases. The 

vertical axis shows the damage intensity coefficient (1-µ) for VDM plots and the probability of 

damage location for CBR plots, therefore the graphics cannot be compared directly. 
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Fig. 4  VDM (left) vs. CBR (right) results for damage cases 1 (top), 2 (middle), 3 (bottom) 
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Conclusions 

The first approach, developed by the IFTR, uses the Virtual Distortion Method for modelling 

damage and standard optimization techniques for identifying it. The defined objective function 

refers to a mean square strain measure, which is then minimized in the optimization process. So, the 

VDM-based approach looks at strains, which may be physically measured e.g. by piezo-patches 

mounted on a beam. The identification results are always presented in deterministic manner. The 

advantage of the VDM approach is a relatively high accuracy of identification (having in mind the 

complexity of the inverse problem). The drawback of the method is high numerical cost involved 

due to costly calculation of the objective function gradients. 

The alternative approach has been developed by the UdG and uses Case-Based Reasoning for 

damage identification. The proposed software tool may be described as efficient data processing 

machine. The CBR-based approach requires numerous input in terms of structural responses in 

order to create a library of various damage cases. Then is utilizes soft-computing methods (neural 

networks) for training the library of cases (building self-organizing maps). A new case is identified 

on the basis of previously stored and trained data. The identification results are always presented in 

probabilistic manner. The advantage of the CBR approach is that once the library of cases is built, 

the identification of a new case is almost immediate, whereas with the VDM approach the 

identification for a new case implies starting the procedure from scratch. The disadvantage of the 

CBR approach is that the quality of solution is highly influenced by the choice of a proper casebase. 

If the real number of damage locations is known (rarely the case) and matched with the proper 

casebase, the identification result will be accurate (see Fig. 4). Otherwise (e.g. using the combined 

casebase I+II+III, not focused on a certain defect type) only a rough defect indication will be given. 
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